Wavelet Kernel Support Vector Machines for Sparse Approximation1

نویسندگان

  • Tong Yubing Yang
  • Dongkai Zhang
چکیده

Wavelet, a powerful tool for signal processing, can be used to approximate the target function. For enhancing the sparse property of wavelet approximation, a new algorithm was proposed by using wavelet kernel Support Vector Machines (SVM), which can converge to minimum error with better sparsity. Here, wavelet functions would be firstly used to construct the admitted kernel for SVM according to Mercy theory; then new SVM with this kernel can be used to approximate the target funciton with better sparsity than wavelet approxiamtion itself. The results obtained by our simulation experiment show the feasibility and validity of wavelet kernel support vector machines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Sparse Representation for Function Approximation1

We derive a new general representation for a function as a linear combination of local correlation kernels at optimal sparse locations (and scales) and characterize its relation to PCA, regularization, sparsity principles and Support Vector Machines.

متن کامل

Predicting cardiac arrhythmia on ECG signal using an ensemble of optimal multicore support vector machines

The use of artificial intelligence in the process of diagnosing heart disease has been considered by researchers for many years. In this paper, an efficient method for selecting appropriate features extracted from electrocardiogram (ECG) signals, based on a genetic algorithm for use in an ensemble multi-kernel support vector machine classifiers, each of which is based on an optimized genetic al...

متن کامل

Separating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir

The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM’s) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this res...

متن کامل

Multi-objective optimisation of relevance vector machines: selecting sparse features for face verification ICML/UAI/COLT 2008 Workshop on Sparse Optimisation and Variable Selection

The relevance vector machine (RVM) (Tipping, 2001) encapsulates a sparse probabilistic model for machine learning tasks. Like support vector machines, use of the kernel trick allows modelling in high dimensional feature spaces to be achieved at low computational cost. However, sparsity is controlled not just by the automatic relevance determination (ARD) prior but also by the choice of basis fu...

متن کامل

Remote Sensing and Land Use Extraction for Kernel Functions Analysis by Support Vector Machines with ASTER Multispectral Imagery

Land use is being considered as an element in determining land change studies, environmental planning and natural resource applications. The Earth’s surface Study by remote sensing has many benefits such as, continuous acquisition of data, broad regional coverage, cost effective data, map accurate data, and large archives of historical data. To study land use / cover, remote sensing as an effic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006